On convergence of branched continued fraction expansions of Horn's hypergeometric function $H_3$ ratios

Autor: T.M. Antonova
Jazyk: English<br />Ukrainian
Rok vydání: 2021
Předmět:
Zdroj: Karpatsʹkì Matematičnì Publìkacìï, Vol 13, Iss 3, Pp 642-650 (2021)
Druh dokumentu: article
ISSN: 2075-9827
2313-0210
DOI: 10.15330/cmp.13.3.642-650
Popis: The paper deals with the problem of convergence of the branched continued fractions with two branches of branching which are used to approximate the ratios of Horn's hypergeometric function $H_3(a,b;c;{\bf z})$. The case of real parameters $c\geq a\geq 0,$ $c\geq b\geq 0,$ $c\neq 0,$ and complex variable ${\bf z}=(z_1,z_2)$ is considered. First, it is proved the convergence of the branched continued fraction for ${\bf z}\in G_{\bf h}$, where $G_{\bf h}$ is two-dimensional disk. Using this result, sufficient conditions for the uniform convergence of the above mentioned branched continued fraction on every compact subset of the domain $\displaystyle H=\bigcup_{\varphi\in(-\pi/2,\pi/2)}G_\varphi,$ where \[\begin{split} G_{\varphi}=\big\{{\bf z}\in\mathbb{C}^{2}:&\;{\rm Re}(z_1e^{-i\varphi})
Databáze: Directory of Open Access Journals