On convergence of branched continued fraction expansions of Horn's hypergeometric function $H_3$ ratios
Autor: | T.M. Antonova |
---|---|
Jazyk: | English<br />Ukrainian |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Karpatsʹkì Matematičnì Publìkacìï, Vol 13, Iss 3, Pp 642-650 (2021) |
Druh dokumentu: | article |
ISSN: | 2075-9827 2313-0210 |
DOI: | 10.15330/cmp.13.3.642-650 |
Popis: | The paper deals with the problem of convergence of the branched continued fractions with two branches of branching which are used to approximate the ratios of Horn's hypergeometric function $H_3(a,b;c;{\bf z})$. The case of real parameters $c\geq a\geq 0,$ $c\geq b\geq 0,$ $c\neq 0,$ and complex variable ${\bf z}=(z_1,z_2)$ is considered. First, it is proved the convergence of the branched continued fraction for ${\bf z}\in G_{\bf h}$, where $G_{\bf h}$ is two-dimensional disk. Using this result, sufficient conditions for the uniform convergence of the above mentioned branched continued fraction on every compact subset of the domain $\displaystyle H=\bigcup_{\varphi\in(-\pi/2,\pi/2)}G_\varphi,$ where \[\begin{split} G_{\varphi}=\big\{{\bf z}\in\mathbb{C}^{2}:&\;{\rm Re}(z_1e^{-i\varphi}) |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |