Autor: |
Xueying Ding, Xiao Liao, Wei Cui, Xiangliang Meng, Ruosong Liu, Qingshan Ye, Donghe Li |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Energies, Vol 17, Iss 17, p 4471 (2024) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en17174471 |
Popis: |
Nowadays, the microgrid system is characterized by a diversification of power factors and a complex network structure. Existing studies on microgrid fault diagnosis and troubleshooting mostly focus on the fault detection and operation optimization of a single power device. However, for increasingly complex microgrid systems, it becomes increasingly challenging to effectively contain faults within a specific spatiotemporal range. This can lead to the spread of power faults, posing great harm to the safety of the microgrid. The topology optimization of the microgrid based on deep reinforcement learning proposed in this paper starts from the overall power grid and aims to minimize the overall failure rate of the microgrid by optimizing the topology of the power grid. This approach can limit internal faults within a small range, greatly improving the safety and reliability of microgrid operation. The method proposed in this paper can optimize the network topology for the single node fault and multi-node fault, reducing the influence range of the node fault by 21% and 58%, respectively. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|