Effect of dietary magnolia bark extract supplementation in finishing pigs on the oxidative stability of meat

Autor: Ruggero Menci, Hajer Khelil-Arfa, Alexandra Blanchard, Luisa Biondi, Marco Bella, Alessandro Priolo, Giuseppe Luciano, Antonio Natalello
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Journal of Animal Science and Biotechnology, Vol 13, Iss 1, Pp 1-12 (2022)
Druh dokumentu: article
ISSN: 2049-1891
DOI: 10.1186/s40104-022-00740-0
Popis: Abstract Background Magnolia bark extract (MBE) is a natural supplement with antioxidant, anti-inflammatory, and antimicrobial activities. Its properties suggest that the dietary supplementation in livestock could improve the quality of products. Therefore, the aim of this study was to investigate, for the first time, the effect of dietary MBE supplementation (0.33 mg/kg) in finishing pigs on the oxidative stability of meat. Oxidative stability is of paramount importance for pork, as it affects storage, retail, and consumer acceptance. For the purpose, the fatty acid profile, cholesterol, fat-soluble vitamins, antioxidant enzymes (catalase, glutathione peroxidase, and superoxide dismutase), non-enzymatic antioxidant capacity (TEAC, FRAP, and Folin-Ciocalteu assays), color stability, and lipid stability of pork were assessed. Results Concerning carcass characteristics, dietary MBE did not affect cold carcass yield, but reduced (P = 0.040) the chilling weight loss. The meat from pigs fed MBE had a lower (P = 0.031) lightness index than the control meat. No effect on intramuscular fat, cholesterol, and fatty acid profile was observed. Dietary MBE did not affect the content of vitamin E (α-tocopherol and γ-tocopherol) in pork, whereas it reduced (P = 0.021) the retinol content. The catalase activity was 18% higher (P = 0.008) in the meat from pigs fed MBE compared with the control group. The MBE supplementation reduced (P = 0.039) by 30% the thiobarbituric acid reactive substances (TBARS) in raw pork over 6 d of aerobic refrigerated storage. Instead, no effect on lipid oxidation was observed in cooked pork. Last, the meat from pigs fed MBE reduced Fe3+-ascorbate catalyzed lipid oxidation in muscle homogenates, with a lower (P = 0.034) TBARS value than the control group after 60 min of incubation. Conclusions Dietary MBE supplementation in finishing pigs delayed the lipid oxidation in raw meat. This effect was combined with an increased catalase concentration. These results suggest that dietary MBE could have implications for improving the shelf-life of pork.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje