Autor: |
Ching-on Lo, Anthony Wai-keung Loh |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Opuscula Mathematica, Vol 40, Iss 4, Pp 495-507 (2020) |
Druh dokumentu: |
article |
ISSN: |
1232-9274 |
DOI: |
10.7494/OpMath.2020.40.4.495 |
Popis: |
Let \(u\) and \(\varphi\) be two analytic functions on the unit disk \(\mathbb{D}\) such that \(\varphi(\mathbb{D}) \subset \mathbb{D}\). A weighted composition operator \(uC_{\varphi}\) induced by \(u\) and \(\varphi\) is defined on \(H^2\), the Hardy space of \(\mathbb{D}\), by \(uC_{\varphi}f := u \cdot f \circ \varphi\) for every \(f\) in \(H^2\). We obtain sufficient conditions for Hilbert-Schmidtness of \(uC_{\varphi}\) on \(H^2\) in terms of function-theoretic properties of \(u\) and \(\varphi\). Moreover, we characterize Hilbert-Schmidt difference of two weighted composition operators on \(H^2\). |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|