Popis: |
Accurate reservoir inflow forecasting is crucial for efficient water management. In this study, different deep learning models, including Dense, Long short-term memory (LSTM), and one-dimensional convolutional neural networks (Conv1D), were used to build ensembles. Seasonal-trend decomposition using loess (STL) was applied to decompose reservoir inflows and precipitations into random, seasonal, and trend components. Seven ensemble models, namely STL-Dense, STL-Conv1D, STL-LSTM, STL-Dense-LSTM-Conv1D, STL-Dense multivariate, STL-LSTM multivariate, and STL-Conv1D multivariate, were proposed and evaluated using daily inflows and precipitation decomposed data from the Lom Pangar reservoir from 2015 to 2020. Evaluation metrics, such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Nash Sutcliff Efficiency (NSE), were applied to assess model performance. Results showed that the STL-Dense multivariate model was the best ensemble among the thirteen models with MAE of 14.636 m3/s, RMSE of 20.841 m3/s, MAPE of 6.622%, and NSE of 0.988. These findings stress the importance of considering multiple inputs and models for accurate reservoir inflow forecasting and optimal water management. Not all ensemble models were good for Lom pangar inflow forecast as the Dense, Conv1D, and LSTM models performed better than their proposed STL monovariate ensemble models. |