Forecast Model Update Based on a Real-Time Data Processing Lambda Architecture for Estimating Partial Discharges in Hydrogenerator

Autor: Fabio Henrique Pereira, Francisco Elânio Bezerra, Diego Oliva, Gilberto Francisco Martha de Souza, Ivan Eduardo Chabu, Josemir Coelho Santos, Shigueru Nagao Junior, Silvio Ikuyo Nabeta
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Sensors, Vol 20, Iss 24, p 7242 (2020)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s20247242
Popis: The prediction of partial discharges in hydrogenerators depends on data collected by sensors and prediction models based on artificial intelligence. However, forecasting models are trained with a set of historical data that is not automatically updated due to the high cost to collect sensors’ data and insufficient real-time data analysis. This article proposes a method to update the forecasting model, aiming to improve its accuracy. The method is based on a distributed data platform with the lambda architecture, which combines real-time and batch processing techniques. The results show that the proposed system enables real-time updates to be made to the forecasting model, allowing partial discharge forecasts to be improved with each update with increasing accuracy.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje