Autor: |
Athanasios Passias, Karolos-Alexandros Tsakalos, Ioannis Kansizoglou, Archontissa Maria Kanavaki, Athanasios Gkrekidis, Dimitrios Menychtas, Nikolaos Aggelousis, Maria Michalopoulou, Antonios Gasteratos, Georgios Ch. Sirakoulis |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Biomimetics, Vol 9, Iss 5, p 296 (2024) |
Druh dokumentu: |
article |
ISSN: |
2313-7673 |
DOI: |
10.3390/biomimetics9050296 |
Popis: |
This study presents a novel solution for ambient assisted living (AAL) applications that utilizes spiking neural networks (SNNs) and reconfigurable neuromorphic processors. As demographic shifts result in an increased need for eldercare, due to a large elderly population that favors independence, there is a pressing need for efficient solutions. Traditional deep neural networks (DNNs) are typically energy-intensive and computationally demanding. In contrast, this study turns to SNNs, which are more energy-efficient and mimic biological neural processes, offering a viable alternative to DNNs. We propose asynchronous cellular automaton-based neurons (ACANs), which stand out for their hardware-efficient design and ability to reproduce complex neural behaviors. By utilizing the remote supervised method (ReSuMe), this study improves spike train learning efficiency in SNNs. We apply this to movement recognition in an elderly population, using motion capture data. Our results highlight a high classification accuracy of 83.4%, demonstrating the approach’s efficacy in precise movement activity classification. This method’s significant advantage lies in its potential for real-time, energy-efficient processing in AAL environments. Our findings not only demonstrate SNNs’ superiority over conventional DNNs in computational efficiency but also pave the way for practical neuromorphic computing applications in eldercare. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|