Autor: |
Pavel Drabek, Mitsuharu Otani |
Jazyk: |
angličtina |
Rok vydání: |
2001 |
Předmět: |
|
Zdroj: |
Electronic Journal of Differential Equations, Vol 2001, Iss 48, Pp 1-19 (2001) |
Druh dokumentu: |
article |
ISSN: |
1072-6691 |
Popis: |
We prove that the nonlinear eigenvalue problem for the p-biharmonic operator with $p > 1$, and $Omega$ a bounded domain in $mathbb{R}^N$ with smooth boundary, has principal positive eigenvalue $lambda_1$ which is simple and isolated. The corresponding eigenfunction is positive in $Omega$ and satisfies $frac{partial u}{partial n} < 0$ on $partial Omega$, $Delta u_1 < 0$ in $Omega$. We also prove that $(lambda_1,0)$ is the point of global bifurcation for associated nonhomogeneous problem. In the case $N=1$ we give a description of all eigenvalues and associated eigenfunctions. Every such an eigenvalue is then the point of global bifurcation. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|