Popis: |
Abstract Background CD56 has been observed in malignant tumours exhibiting neuronal or neuroendocrine differentiation, such as breast cancer, small-cell lung cancer, and neuroblastoma. Abnormal glycosylation modifications are thought to play a role in regulating tumour cell proliferation, migration, and invasion. Nevertheless, the exact roles and molecular mechanisms of CD56 and polysialylated CD56 (PSA-CD56) in the development and progression of clear cell renal cell carcinoma (ccRCC) remain elusive. Here we unveil the biological significance of CD56 and PSA-CD56 in ccRCC. Methods In this study, we employed various techniques, including immunohistochemistry (IHC), RT-qPCR, and western blot, to examine the mRNA and protein expression levels in both human ccRCC tissue and cell lines. Lentivirus infection and CRISPR/Cas9 system were utilized to generate overexpression and knockout cell lines of CD56. Additionally, we conducted several functional assays, such as CCK-8, colony formation, cell scratch, and transwell assays to evaluate cell growth, proliferation, migration, and invasion. Furthermore, we established a xenograft tumor model to investigate the role of CD56 in ccRCC in vivo. To gain further insights into the molecular mechanisms associated with CD56, we employed the Hedgehog inhibitor JK184 and the β-catenin inhibitor Prodigiosin. Results CD56 was significantly overexpressed in both human ccRCC tissues and renal cancer cell lines compared to adjacent normal tissues and normal renal epithelial cells. In vitro and in vivo experiments revealed that the knockout of CD56 inhibited the proliferation, migration, and invasion capabilities of ccRCC cells, whereas the overexpression of PSA-CD56 promoted these capacities. Finally, PSA-CD56 overexpression was found to activate both the Hedgehog and Wnt/β-catenin signaling pathways. Conclusion Our findings demonstrate that the oncogenic function of CD56 polysialylation plays a vital role in the tumorigenesis and progression of ccRCC, implying that targeting PSA-CD56 might be a feasible treatment target for ccRCC. |