Steiner Wiener index of graph products
Autor: | Yaoping Mao, Zhao Wang, Ivan Gutman |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Transactions on Combinatorics, Vol 5, Iss 3, Pp 39-50 (2016) |
Druh dokumentu: | article |
ISSN: | 2251-8657 2251-8665 |
Popis: | The Wiener index W(G) of a connected graph G is defined as W(G)=∑u,v∈V(G)dG(u,v) where dG(u,v) is the distance between the vertices u and v of G. For S⊆V(G), the Steiner distance d(S) of the vertices of S is the minimum size of a connected subgraph of G whose vertex set is S. The k-th Steiner Wiener index SWk(G) of G is defined as SWk(G)=∑|S|=kS⊆V(G)d(S). We establish expressions for the k-th Steiner Wiener index on the join, corona, cluster, lexicographical product, and Cartesian product of graphs. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |