Autor: |
Shinan Song, Zhiyi Fang, Zhanyang Zhang, Chin-Ling Chen, Hongyu Sun |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
IEEE Access, Vol 8, Pp 118192-118204 (2020) |
Druh dokumentu: |
article |
ISSN: |
2169-3536 |
DOI: |
10.1109/ACCESS.2020.3004861 |
Popis: |
Task offloading could optimize computational resource utilization in edge computing environments. However, how to assign and offload tasks for different behavior users is an essential problem since the systems dynamic, intelligent application diversity, and user personality. With user behavior prediction, this paper proposes soCoM, a semi-online Computational Offloading Model. We explore the user behaviors in sophisticated action space by reinforcement learning for catching unknown environment information. With Dueling Deep-Q Network, both the prediction accuracy of users' behaviors and the server load balance are well-considered, while increasing the computational efficiency and decreasing the resource costing. We propose a dynamic simulation environment of edge computing to demonstrate that user behavior is the critical factor for impacting system utilization. As the action space increasing, Dueling DQN performs better than state-of-art DQN and other improved strategies, and also load balance in multiple different server scenario. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|