Acetate attenuates cyclophosphamide-induced cardiac injury via inhibition of NF-kB signaling and suppression of caspase 3-dependent apoptosis in Wistar rats

Autor: D.H. Adeyemi, M.A. Hamed, D.T. Oluwole, A.I. Omole, R.E. Akhigbe
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Biomedicine & Pharmacotherapy, Vol 170, Iss , Pp 116019- (2024)
Druh dokumentu: article
ISSN: 0753-3322
DOI: 10.1016/j.biopha.2023.116019
Popis: Aim: The goal of the current study was to examine the potential therapeutic effects of sodium acetate on cardiac toxicities caused by cyclophosphamide in Wistar rats. The possible involvement of NF-kB/caspase 3 signaling was also explored. Main methods: Thirty-two male Wistar rats were divided into four groups at random. (n = 8). The control animals received 0.5 mL of distilled water orally for 14 days, the acetate-treated group received 200 mg/kg/day of sodium acetate orally for 14 consecutive days, and cyclophosphamide-treated rats received 150 mg/kg /day of cyclophosphamide i.p. on day 8, while cyclophosphamide + acetate group received sodium acetate and cyclophosphamide as earlier stated. Key findings: Results showed that cyclophosphamide-induced cardiotoxicity, which manifested as a marked drop in body and cardiac weights as well as cardiac weight/tibial length, increased levels of troponin, C-reactive protein, lactate, and creatinine kinase, and lactate dehydrogenase activities in the plasma and cardiac tissue. Histopathological examination also revealed toxic cardiac histopathological changes. These alterations were associated with a significant increase in xanthine oxidase and myeloperoxidase activities, uric acid, malondialdehyde, TNF-α, IL-1β, NFkB, DNA fragmentation, and caspase 3 and caspase 9 activities in addition to a marked decline in Nrf2 and GSH levels, and SOD and catalase activities in the cardiac tissue. Acetate co-administration significantly attenuated cyclophosphamide cardiotoxicity by its antioxidant effect, preventing NFkB activation and caspase 9/caspase 3 signalings. Significance: This study shows that acetate co-administration may have cardio-protective effects against cyclophosphamide-induced cardiotoxicity by inhibiting NF-kB signaling and suppressing caspase-3-dependent apoptosis.
Databáze: Directory of Open Access Journals