Autor: |
Željko Kos, Sergii Kroviakov, Vitalii Kryzhanovskyi, Iryna Grynyova |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Applied Sciences, Vol 12, Iss 3, p 1174 (2022) |
Druh dokumentu: |
article |
ISSN: |
2076-3417 |
DOI: |
10.3390/app12031174 |
Popis: |
High-early strength fiber-reinforced concretes are effective materials for the full depth repair of rigid highway and airfield pavements. A comprehensive study was carried out on the influence of the amount of steel anchor fiber and hardening accelerator on properties that are important for repairing concrete. A two-factor experiment was carried out, in which the influence of the hardening accelerator and fiber dosages on the strength, frost resistance, wear resistance and shrinkage of repaired steel-fiber-reinforced concrete for rigid pavements was studied. The investigated concretes contained 400 kg/m3 of cement and polycarboxylate plasticizer in the amount of 1.2% of the cement content. It has been established that the optimal concrete compositions are with the amount of Sika Rapid 3 hardening accelerator from 1 to 2% of the cement content and the steel fiber amount from 60 to 90 kg/m3. Optimal fiber-reinforced concrete compositions have a reduced shrinkage during hardening, and at the age of 2 days they have a compressive strength of at least 55 MPa and a flexural strength of at least 8.5 MPa. At the design age, the fiber-reinforced concrete compressive strength is 85–90 MPa, its flexural strength ranges from 15.5 to 17.5 MPa, it has a frost resistance of F200 and abrasion not higher than 0.24 g/cm2. These properties ensure the high durability of the repair material. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|