DNA-Based Electrodes and Computational Approaches on the Intercalation Study of Antitumoral Drugs

Autor: Edson Silvio Batista Rodrigues, Isaac Yves Lopes de Macêdo, Giovanna Nascimento de Mello e Silva, Arthur de Carvalho e Silva, Henric Pietro Vicente Gil, Bruno Junior Neves, Eric de Souza Gil
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Molecules, Vol 26, Iss 24, p 7623 (2021)
Druh dokumentu: article
ISSN: 26247623
1420-3049
DOI: 10.3390/molecules26247623
Popis: The binding between anticancer drugs and double-stranded DNA (dsDNA) is a key issue to understand their mechanism of action, and many chemical methods have been explored on this task. Molecular docking techniques successfully predict the affinity of small molecules into the DNA binding sites. In turn, various DNA-targeted drugs are electroactive; in this regard, their electrochemical behavior may change according to the nature and strength of interaction with DNA. A carbon paste electrode (CPE) modified with calf thymus ds-DNA (CPDE) and computational methods were used to evaluate the drug–DNA intercalation of doxorubicin (DOX), daunorubicin (DAU), idarubicin (IDA), dacarbazine (DAR), mitoxantrone (MIT), and methotrexate (MTX), aiming to evaluate eventual correlations. CPE and CPDE were immersed in pH 7 0.1 mM solutions of each drug with different incubation times. As expected, the CPDE response for all DNA-targeted drugs was higher than that of CPE, evidencing the drug–DNA interaction. A peak current increase of up to 10-fold was observed; the lowest increase was seen for MTX, and the highest increase for MIT. Although this increase in the sensitivity is certainly tied to preconcentration effects of DNA, the data did not agree entirely with docking studies, evidencing the participation of other factors, such as viscosity, interfacial electrostatic interactions, and coefficient of diffusion.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje