Autor: |
Alex Brandts, Tali Pinsky, Lior Silberman |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Symmetry, Vol 11, Iss 10, p 1206 (2019) |
Druh dokumentu: |
article |
ISSN: |
2073-8994 |
DOI: |
10.3390/sym11101206 |
Popis: |
Periodic geodesics on the modular surface correspond to periodic orbits of the geodesic flow in its unit tangent bundle PSL 2 ( Z ) ∖ PSL 2 ( R ) . A finite collection of such orbits is a collection of disjoint closed curves in a 3-manifold, in other words a link. The complement of those links is always a hyperbolic 3-manifold, and hence has a well-defined volume. We present strong numerical evidence that, in the case of the set of geodesics corresponding to the ideal class group of a real quadratic field, the volume has linear asymptotics in terms of the total length of the geodesics. This is not the case for general sets of geodesics. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|