Study on the Pyrolysis and Fire Extinguishing Performance of High-Temperature-Resistant Ultrafine Dry Powder Fire Extinguishing Agents for Aviation Applications

Autor: Zhixuan Wang, Yi Zhang, Yurong Liu, Jun Wang, Xia Zhou, Renming Pan
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Molecules, Vol 29, Iss 15, p 3500 (2024)
Druh dokumentu: article
ISSN: 1420-3049
DOI: 10.3390/molecules29153500
Popis: Ultrafine KAl(OH)2CO3 dry powder (UDWP), as a novel high-temperature-resistant ultrafine dry powder fire extinguishing agent, has garnered significant attention in the field of aviation fire protection. However, its development has been hindered by its hydrophilicity, which leads to hygroscopicity, and its tendency for re-ignition due to oil deposition. Therefore, this study employs perfluorodecyltrimethoxysilane (PFDTMS) to modify the surface of UDWP, resulting in hydrophobic and oleophobic M-UDWP. The thermal stability and hydrophobicity of M-UDWP ensure its long-term stable storage in aircraft equipment compartments, thereby reducing aircraft maintenance costs. Additionally, its oleophobicity provides excellent anti-re-ignition performance, protecting aircraft power compartments from secondary fire damage. Energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analyses indicate that the PFDTMS modifier was successfully grafted onto KAl(OH)2CO3. Furthermore, M-UDWP exhibits a three-stage thermal decomposition process. The first-stage decomposition can be regarded as a single-step reaction, and the calculated kinetic parameters provide accurate predictions. Thermogravimetric analysis-Fourier transform infrared spectroscopy-mass spectrometry (TG-FTIR-MS) results reveal that M-UDWP significantly produces H2O and CO2 during thermal decomposition, which is one of its core fire extinguishing mechanisms. For the combustion of #RP-3 and #RP-5 aviation kerosene, commonly found in aircraft engine nacelles, the extinguishing times required by M-UDWP are 243 ms and 224 ms, respectively, with minimum extinguishing concentrations (MEC) of 25.9 g/m3 and 23.4 g/m3, respectively. The study of M-UDWP’s thermal stability aids in understanding its storage stability under high-temperature conditions and its fire extinguishing mechanisms in fire zones. Moreover, the research findings suggest that M-UDWP has the potential to replace Halon 1301 in aircraft engine nacelles.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje