RNA folding using quantum computers.
Autor: | Dillion M Fox, Christopher M MacDermaid, Andrea M A Schreij, Magdalena Zwierzyna, Ross C Walker |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | PLoS Computational Biology, Vol 18, Iss 4, p e1010032 (2022) |
Druh dokumentu: | article |
ISSN: | 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1010032 |
Popis: | The 3-dimensional fold of an RNA molecule is largely determined by patterns of intramolecular hydrogen bonds between bases. Predicting the base pairing network from the sequence, also referred to as RNA secondary structure prediction or RNA folding, is a nondeterministic polynomial-time (NP)-complete computational problem. The structure of the molecule is strongly predictive of its functions and biochemical properties, and therefore the ability to accurately predict the structure is a crucial tool for biochemists. Many methods have been proposed to efficiently sample possible secondary structure patterns. Classic approaches employ dynamic programming, and recent studies have explored approaches inspired by evolutionary and machine learning algorithms. This work demonstrates leveraging quantum computing hardware to predict the secondary structure of RNA. A Hamiltonian written in the form of a Binary Quadratic Model (BQM) is derived to drive the system toward maximizing the number of consecutive base pairs while jointly maximizing the average length of the stems. A Quantum Annealer (QA) is compared to a Replica Exchange Monte Carlo (REMC) algorithm programmed with the same objective function, with the QA being shown to be highly competitive at rapidly identifying low energy solutions. The method proposed in this study was compared to three algorithms from literature and, despite its simplicity, was found to be competitive on a test set containing known structures with pseudoknots. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |