Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning

Autor: Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, Harry Zekollari, Clovis Galiez
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Nature Communications, Vol 13, Iss 1, Pp 1-11 (2022)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-022-28033-0
Popis: Deep learning unveils a nonlinear sensitivity of glacier mass changes to future climate warming, with important implications for water resources and sea-level rise coming from glaciers and particularly ice caps.
Databáze: Directory of Open Access Journals