A Multi-Source-Data-Assisted AUV for Path Cruising: An Energy-Efficient DDPG Approach

Autor: Tianyu Xing, Xiaohao Wang, Kaiyang Ding, Kai Ni, Qian Zhou
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Remote Sensing, Vol 15, Iss 23, p 5607 (2023)
Druh dokumentu: article
ISSN: 2072-4292
DOI: 10.3390/rs15235607
Popis: As marine activities expand, deploying underwater autonomous vehicles (AUVs) becomes critical. Efficiently navigating these AUVs through intricate underwater terrains is vital. This paper proposes a sophisticated motion-planning algorithm integrating deep reinforcement learning (DRL) with an improved artificial potential field (IAPF). The algorithm incorporates remote sensing information to overcome traditional APF challenges and combines the IAPF with the traveling salesman problem for optimal path cruising. Through a combination of DRL and multi-source data optimization, the approach ensures minimal energy consumption across all target points. Inertial sensors further refine trajectory, ensuring smooth navigation and precise positioning. The comparative experiments confirm the method’s energy efficiency, trajectory refinement, and safety excellence.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje