Autor: |
Yi Zhuang, Du Yin, Lang Wu, Gaoqiang Niu, Fei Wang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
APL Machine Learning, Vol 2, Iss 1, Pp 016104-016104-9 (2024) |
Druh dokumentu: |
article |
ISSN: |
2770-9019 |
DOI: |
10.1063/5.0160983 |
Popis: |
Metal–oxide–semiconductor (MOS) gas sensors are widely used for gas detection and monitoring. However, MOS gas sensors have always suffered from instability in the link between gas sensor data and the measured gas concentration. In this paper, we propose a novel deep learning approach that combines the surface state model and a Gated Recurrent Unit (GRU)-based regression to enhance the analysis of gas sensor data. The surface state model provides valuable insights into the microscopic surface processes underlying the conductivity response to pulse heating, while the GRU model effectively captures the temporal dependencies present in time-series data. The experimental results demonstrate that the theory guided model GRU+β outperforms the elementary GRU algorithm in terms of accuracy and astringent speed. The incorporation of the surface state model and the parameter rate enhances the model’s accuracy and provides valuable information for learning pulse-heated regression tasks with better generalization. This research exhibits superiority of integrating domain knowledge and deep learning techniques in the field of gas sensor data analysis. The proposed approach offers a practical framework for improving the understanding and prediction of gas concentrations, facilitating better decision-making in various practical applications. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|