Completely simple endomorphism rings of modules
Autor: | Victor Bovdi, Mohamed Salim, Mihail Ursul |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Applied General Topology, Vol 19, Iss 2, Pp 223-237 (2018) |
Druh dokumentu: | article |
ISSN: | 1576-9402 1989-4147 |
DOI: | 10.4995/agt.2018.7955 |
Popis: | It is proved that if Ap is a countable elementary abelian p-group, then: (i) The ring End (Ap) does not admit a nondiscrete locally compact ring topology. (ii) Under (CH) the simple ring End (Ap)/I, where I is the ideal of End (Ap) consisting of all endomorphisms with finite images, does not admit a nondiscrete locally compact ring topology. (iii) The finite topology on End (Ap) is the only second metrizable ring topology on it. Moreover, a characterization of completely simple endomorphism rings of modules over commutative rings is obtained. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |