A hyperbolic variant of the Nelder–Mead simplex method in low dimensions

Autor: Lócsi Levente
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Acta Universitatis Sapientiae: Mathematica, Vol 5, Iss 2, Pp 169-183 (2013)
Druh dokumentu: article
ISSN: 2066-7752
DOI: 10.2478/ausm-2014-0012
Popis: The Nelder-Mead simplex method is a widespread applied numerical optimization method with a vast number of practical applications, but very few mathematically proven convergence properties. The original formulation of the algorithm is stated in Rn using terms of Euclidean geometry. In this paper we introduce the idea of a hyperbolic variant of this algorithm using the Poincaré disk model of the Bolyai- Lobachevsky geometry. We present a few basic properties of this method and we also give a Matlab implementation in 2 and 3 dimensions
Databáze: Directory of Open Access Journals