Siamese Transformer-Based Building Change Detection in Remote Sensing Images

Autor: Jiawei Xiong, Feng Liu, Xingyuan Wang, Chaozhong Yang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Sensors, Vol 24, Iss 4, p 1268 (2024)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s24041268
Popis: To address the challenges of handling imprecise building boundary information and reducing false-positive outcomes during the process of detecting building changes in remote sensing images, this paper proposes a Siamese transformer architecture based on a difference module. This method introduces a layered transformer to provide global context modeling capability and multiscale features to better process building boundary information, and a difference module is used to better obtain the difference features of a building before and after a change. The difference features before and after the change are then fused, and the fused difference features are used to generate a change map, which reduces the false-positive problem to a certain extent. Experiments were conducted on two publicly available building change detection datasets, LEVIR-CD and WHU-CD. The F1 scores for LEVIR-CD and WHU-CD reached 89.58% and 84.51%, respectively. The experimental results demonstrate that when utilized for building change detection in remote sensing images, the proposed method exhibits improved robustness and detection performance. Additionally, this method serves as a valuable technical reference for the identification of building damage in remote sensing images.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje