Autor: |
Jiawei Xiong, Feng Liu, Xingyuan Wang, Chaozhong Yang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Sensors, Vol 24, Iss 4, p 1268 (2024) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s24041268 |
Popis: |
To address the challenges of handling imprecise building boundary information and reducing false-positive outcomes during the process of detecting building changes in remote sensing images, this paper proposes a Siamese transformer architecture based on a difference module. This method introduces a layered transformer to provide global context modeling capability and multiscale features to better process building boundary information, and a difference module is used to better obtain the difference features of a building before and after a change. The difference features before and after the change are then fused, and the fused difference features are used to generate a change map, which reduces the false-positive problem to a certain extent. Experiments were conducted on two publicly available building change detection datasets, LEVIR-CD and WHU-CD. The F1 scores for LEVIR-CD and WHU-CD reached 89.58% and 84.51%, respectively. The experimental results demonstrate that when utilized for building change detection in remote sensing images, the proposed method exhibits improved robustness and detection performance. Additionally, this method serves as a valuable technical reference for the identification of building damage in remote sensing images. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|