Autor: |
A Baliki, JJ Nieto, A Ouahab, ML Sinacer |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Fixed Point Theory and Applications, Vol 2017, Iss 1, Pp 1-29 (2017) |
Druh dokumentu: |
article |
ISSN: |
1687-1812 |
DOI: |
10.1186/s13663-017-0622-z |
Popis: |
Abstract In this paper, we study the existence of solutions for systems of random semilinear impulsive differential equations. The existence results are established by means of a new version of Perov’s, a nonlinear alternative of Leray-Schauder’s fixed point principles combined with a technique based on vector-valued metrics and convergent to zero matrices. Also, we give a random abstract formulation to Sadovskii’s fixed point theorem in a vector-valued Banach space. Examples illustrating the results are included. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|