Random semilinear system of differential equations with impulses

Autor: A Baliki, JJ Nieto, A Ouahab, ML Sinacer
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Fixed Point Theory and Applications, Vol 2017, Iss 1, Pp 1-29 (2017)
Druh dokumentu: article
ISSN: 1687-1812
DOI: 10.1186/s13663-017-0622-z
Popis: Abstract In this paper, we study the existence of solutions for systems of random semilinear impulsive differential equations. The existence results are established by means of a new version of Perov’s, a nonlinear alternative of Leray-Schauder’s fixed point principles combined with a technique based on vector-valued metrics and convergent to zero matrices. Also, we give a random abstract formulation to Sadovskii’s fixed point theorem in a vector-valued Banach space. Examples illustrating the results are included.
Databáze: Directory of Open Access Journals