NF9 peptide specific cytotoxic T lymphocyte clone cross react to Y453F mutation of SARS-CoV-2 virus spike protein

Autor: Aiko Murai, Terufumi Kubo, Takayuki Ohkuri, Junko Yanagawa, Yuki Yajima, Akemi Kosaka, Dongliang Li, Toshihiro Nagato, Kenji Murata, Takayuki Kanaseki, Tomohide Tsukahara, Takeshi Nagasaki, Yoshihiko Hirohashi, Hiroya Kobayashi, Toshihiko Torigoe
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Immunological Medicine, Vol 47, Iss 2, Pp 93-99 (2024)
Druh dokumentu: article
ISSN: 25785826
2578-5826
DOI: 10.1080/25785826.2024.2304363
Popis: AbstractThe recognition by cytotoxic T cells (CTLs) is essential for the clearance of SARS-CoV-2 virus-infected cells. Several viral proteins have been described to be recognized by CTLs. Among them, the spike (S) protein is one of the immunogenic proteins. The S protein acts as a ligand for its receptors, and several mutants with different affinities for its cognate receptors have been reported, and certain mutations in the S protein, such as L452R and Y453F, have been found to inhibit the HLA-A24-restricted CTL response. In this study, we conducted a screening of candidate peptides derived from the S protein, specifically targeting those carrying the HLA-A24 binding motif. Among these peptides, we discovered that NF9 (NYNYLYRLF) represents an immunogenic epitope. CTL clones specific to the NF9 peptide were successfully established. These CTL clones exhibited the ability to recognize endogenously expressed NF9 peptide. Interestingly, the CTL clone demonstrated cross-reactivity with the Y453F peptide (NYNYLFRLF) but not with the L452R peptide (NYNYRYRLF). The CTL clone was able to identify the endogenously expressed Y453F mutant peptide. These findings imply that the NF9-specific CTL clone possesses the capability to recognize and respond to the Y453F mutant peptide.
Databáze: Directory of Open Access Journals