A correlation of the adsorption capacity of perovskite/biochar composite with the metal ion characteristics

Autor: Shimaa M. Ali, Mohamed A. El Mansop, Ahmed Galal, Soha M. Abd El Wahab, Wafaa M. T. El-Etr, Hanaa A. Zein El-Abdeen
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Scientific Reports, Vol 13, Iss 1, Pp 1-10 (2023)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-023-36592-5
Popis: Abstract LaFeO3/biochar composite is prepared by cellulose-modified microwave-assisted method at 450 °C. The structure is identified by Raman spectrum which, consists of characteristics biochar bands and octahedral perovskite chemical shifts. The morphology is examined by scanning electron microscope (SEM); two phases are observed, rough microporous biochar and orthorhombic perovskite particles. The BET surface area of the composite is 57.63 m2/g. The prepared composite is applied as a sorbent for the removal of Pb2+, Cd2+, and Cu2+ ions from aqueous solutions and wastewater. The adsorption ability reaches a maximum at pH > 6 for Cd2+, and Cu2+ ions, and is pH-independent for Pb2+ ions adsorption. The adsorption follows pseudo 2nd order kinetic model, Langmuir isotherm for Pb2+ ions, and Temkin isotherms for Cd2+, and Cu2+ ions. The maximum adsorption capacities, q m , are 606, 391, and 112 mg/g for Pb2+, Cd2+, and Cu2+ ions, respectively. The electrostatic interaction is responsible for the adsorption of Cd2+, and Cu2+ ions on LaFeO3/biochar composite. In case of Pb2+ ions form a complex with the surface functional groups of the adsorbate. LaFeO3/biochar composite shows high selectivity for the studied metal ions and excellent performance in real samples. The proposed sorbent can be easily regenerated and effectively reused.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje