Generalized Polynomials on Semigroups

Autor: Ebanks Bruce
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Annales Mathematicae Silesianae, Vol 38, Iss 1, Pp 18-28 (2024)
Druh dokumentu: article
ISSN: 2391-4238
DOI: 10.2478/amsil-2023-0026
Popis: This article has two main parts. In the first part we show that some of the basic theory of generalized polynomials on commutative semi-groups can be extended to all semigroups. In the second part we show that if a sub-semigroup S of a group G generates G in the sense that G = S · S−1, then a generalized polynomial on S with values in an Abelian group H can be extended to a generalized polynomial on G into H. Finally there is a short discussion of the extendability of exponential functions and generalized exponential polynomials.
Databáze: Directory of Open Access Journals