Autor: |
Yanyun Xie, Wenliang Cai, Jing Wang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Discrete Dynamics in Nature and Society, Vol 2024 (2024) |
Druh dokumentu: |
article |
ISSN: |
1607-887X |
DOI: |
10.1155/2024/2728661 |
Popis: |
In this paper, a fractional-order unified system with complex variables is proposed. Firstly, the basic properties of the system including the equilibrium points and symmetry are analyzed. Bifurcations of the system in commensurate-order and incommensurate-order cases are studied. Tangent and period-doubling bifurcations can be observed when a derivative order or a parameter is varied. The stabilization the system is investigated via the predict feedback method. Based on the stability theory of fractional-order systems, a projective synchronization for the fractional-order unified complex system is proposed by designing an appropriate controller. Numerical simulations are applied to verify the effectiveness of the proposed scheme. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|