Stability and Synchronization of a Fractional-Order Unified System with Complex Variables

Autor: Yanyun Xie, Wenliang Cai, Jing Wang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Discrete Dynamics in Nature and Society, Vol 2024 (2024)
Druh dokumentu: article
ISSN: 1607-887X
DOI: 10.1155/2024/2728661
Popis: In this paper, a fractional-order unified system with complex variables is proposed. Firstly, the basic properties of the system including the equilibrium points and symmetry are analyzed. Bifurcations of the system in commensurate-order and incommensurate-order cases are studied. Tangent and period-doubling bifurcations can be observed when a derivative order or a parameter is varied. The stabilization the system is investigated via the predict feedback method. Based on the stability theory of fractional-order systems, a projective synchronization for the fractional-order unified complex system is proposed by designing an appropriate controller. Numerical simulations are applied to verify the effectiveness of the proposed scheme.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje