Autor: |
Rohan Singh, Sunil Nagpal, Nishal K. Pinna, Sharmila S. Mande |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 12, Iss 1, Pp 1-16 (2022) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-022-20000-5 |
Popis: |
Abstract Natural language processing (NLP) algorithms process linguistic data in order to discover the associated word semantics and develop models that can describe or even predict the latent meanings of the data. The applications of NLP become multi-fold while dealing with dynamic or temporally evolving datasets (e.g., historical literature). Biological datasets of genome-sequences are interesting since they are sequential as well as dynamic. Here we describe how SARS-CoV-2 genomes and mutations thereof can be processed using fundamental algorithms in NLP to reveal the characteristics and evolution of the virus. We demonstrate applicability of NLP in not only probing the temporal mutational signatures through dynamic topic modelling, but also in tracing the mutation-associations through tracing of semantic drift in genomic mutation records. Our approach also yields promising results in unfolding the mutational relevance to patient health status, thereby identifying putative signatures linked to known/highly speculated mutations of concern. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|