Amyloid beta protein-induced zinc sequestration leads to synaptic loss via dysregulation of the ProSAP2/Shank3 scaffold

Autor: Hof Patrick R, Andreasson Katrin I, Woodling Nathaniel S, Schoen Michael, Arons Magali, Udvardi Patrick T, Schmeisser Michael J, Grabrucker Andreas M, Buxbaum Joseph D, Garner Craig C, Boeckers Tobias M
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: Molecular Neurodegeneration, Vol 6, Iss 1, p 65 (2011)
Druh dokumentu: article
ISSN: 1750-1326
DOI: 10.1186/1750-1326-6-65
Popis: Abstract Background Memory deficits in Alzheimer's disease (AD) manifest together with the loss of synapses caused by the disruption of the postsynaptic density (PSD), a network of scaffold proteins located in dendritic spines. However, the underlying molecular mechanisms remain elusive. Since it was shown that ProSAP2/Shank3 scaffold assembly within the PSD is Zn2+-dependent and that the amyloid beta protein (Aβ) is able to bind Zn2+, we hypothesize that sequestration of Zn2+ ions by Aβ contributes to ProSAP/Shank platform malformation. Results To test this hypothesis, we designed multiple in vitro and in vivo assays demonstrating ProSAP/Shank dysregulation in rat hippocampal cultures following Aβ oligomer accumulation. These changes were independent from alterations on ProSAP/Shank transcriptional level. However, application of soluble Aβ prevented association of Zn2+ ions with ProSAP2/Shank3 in a cell-based assay and decreased the concentration of Zn2+ clusters within dendrites. Zn2+ supplementation or saturation of Aβ with Zn2+ ions prior to cell treatment was able to counter the effects induced by Aβ on synapse density and ProSAP2/Shank3 levels at the PSD. Interestingly, intracellular Zn2+ levels in APP-PS1 mice and human AD hippocampus are reduced along with a reduction in synapse density and synaptic ProSAP2/Shank3 and Shank1 protein levels. Conclusions We conclude that sequestration of Zn2+ ions by Aβ significantly contributes to changes in ProSAP2/Shank3 platforms. These changes in turn lead to less consolidated (mature) synapses reflected by a decrease in Shank1 protein levels at the PSD and decreased synapse density in hippocampal neurons.
Databáze: Directory of Open Access Journals