The p-Royden and p-Harmonic Boundaries for Metric Measure Spaces
Autor: | Lucia Marcello, Puls Michael J. |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Analysis and Geometry in Metric Spaces, Vol 3, Iss 1 (2015) |
Druh dokumentu: | article |
ISSN: | 2299-3274 2015-0008 |
DOI: | 10.1515/agms-2015-0008 |
Popis: | Let p be a real number greater than one and let X be a locally compact, noncompact metric measure space that satisfies certain conditions. The p-Royden and p-harmonic boundaries of X are constructed by using the p-Royden algebra of functions on X and a Dirichlet type problem is solved for the p-Royden boundary. We also characterize the metric measure spaces whose p-harmonic boundary is empty. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |