Popis: |
Respiratory illnesses present a significant threat to porcine health, with co-infections involving Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Streptococcus suis (SS), Porcine Circovirus Type 2 (PCV2), and Porcine Circovirus Type 3 (PCV3) acting as the primary causative agents. As a result, the precise diagnosis of PRRSV, PCV2, PCV3 and SS is of paramount importance in the prevention and control of respiratory diseases in swine. Therefore, we conducted a molecular bioinformatical analysis to concurrently detect and differentiate PRRSV, PCV2, PCV3 and SS. We selected the ORF6 gene of PRRSV, the ORF2 gene of PCV2 and PCV3, and the glutamate dehydrogenase (GDH) gene of SS as targets. Specific primers and probes were designed for each pathogen, and following meticulous optimization of reaction conditions, we established a multiple TaqMan fluorescence quantitative PCR detection method. Subsequently, we subjected this method to a comprehensive assessment, evaluating its specificity, sensitivity, and repeatability. The research results demonstrated that the established multiple TaqMan fluorescence quantitative PCR detection method displays displayed exemplary specificity, with no instances of cross-reactivity with other pathogens. The method’s minimum detection concentrations for PRRSV, PCV2, PCV3, and SS were 2.80 × 101 copies/µL, 1.96 × 102 copies/µL, 2.30 × 102 copies/µL, and 1.75 × 103 copies/µL, respectively. When applied to the analysis of 30 clinical samples, the results closely mirrored those obtained through Chinese standard uniplex real-time qPCR detection method for PRRSV, as well as the general PCR methods for SS, PCV2, and PCV3. This study underscores the robust specificity, high sensitivity, and consistent stability of the multiple TaqMan fluorescence quantitative PCR detection method that we have developed. It is ideally suited to the clinical monitoring of PRRSV, PCV2, PCV3, and SS, and it carries significant importance in ongoing efforts to prevent and manage respiratory diseases in porcine populations. |