Graphs With All But Two Eigenvalues In [−2, 0]

Autor: Abreu Nair, Alencar Jorge, Brondani André, de Lima Leonardo, Oliveira Carla
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Discussiones Mathematicae Graph Theory, Vol 40, Iss 2, Pp 379-391 (2020)
Druh dokumentu: article
ISSN: 2083-5892
DOI: 10.7151/dmgt.2286
Popis: The eigenvalues of a graph are those of its adjacency matrix. Recently, Cioabă, Haemers and Vermette characterized all graphs with all but two eigenvalues equal to −2 and 0. In this article, we extend their result by characterizing explicitly all graphs with all but two eigenvalues in the interval [−2, 0]. Also, we determine among them those that are determined by their spectrum.
Databáze: Directory of Open Access Journals