SINE jumping contributes to large-scale polymorphisms in the pig genomes

Autor: Cai Chen, Enrico D’Alessandro, Eduard Murani, Yao Zheng, Domenico Giosa, Naisu Yang, Xiaoyan Wang, Bo Gao, Kui Li, Klaus Wimmers, Chengyi Song
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Mobile DNA, Vol 12, Iss 1, Pp 1-17 (2021)
Druh dokumentu: article
ISSN: 1759-8753
DOI: 10.1186/s13100-021-00246-y
Popis: Abstract Background Molecular markers based on retrotransposon insertion polymorphisms (RIPs) have been developed and are widely used in plants and animals. Short interspersed nuclear elements (SINEs) exert wide impacts on gene activity and even on phenotypes. However, SINE RIP profiles in livestock remain largely unknown, and not be revealed in pigs. Results Our data revealed that SINEA1 displayed the most polymorphic insertions (22.5 % intragenic and 26.5 % intergenic), followed by SINEA2 (10.5 % intragenic and 9 % intergenic) and SINEA3 (12.5 % intragenic and 5.0 % intergenic). We developed a genome-wide SINE RIP mining protocol and obtained a large number of SINE RIPs (36,284), with over 80 % accuracy and an even distribution in chromosomes (14.5/Mb), and 74.34 % of SINE RIPs generated by SINEA1 element. Over 65 % of pig SINE RIPs overlap with genes, most of them (> 95 %) are in introns. Overall, about one forth (23.09 %) of the total genes contain SINE RIPs. Significant biases of SINE RIPs in the transcripts of protein coding genes were observed. Nearly half of the RIPs are common in these pig breeds. Sixteen SINE RIPs were applied for population genetic analysis in 23 pig breeds, the phylogeny tree and cluster analysis were generally consistent with the geographical distributions of native pig breeds in China. Conclusions Our analysis revealed that SINEA1–3 elements, particularly SINEA1, are high polymorphic across different pig breeds, and generate large-scale structural variations in the pig genomes. And over 35,000 SINE RIP markers were obtained. These data indicate that young SINE elements play important roles in creating new genetic variations and shaping the evolution of pig genome, and also provide strong evidences to support the great potential of SINE RIPs as genetic markers, which can be used for population genetic analysis and quantitative trait locus (QTL) mapping in pig.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje