An enhanced YOLOv8n object detector for synthetic diamond quality evaluation

Autor: Shixiong Zhang, Ang Li, Jianxin Ren, Xingchong Li
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-79549-y
Popis: Abstract To address the need for automated sorting of synthetic diamonds based on quality in manufacturing enterprises, this study developed a dedicated dataset and an enhanced YOLOv8n model for synthetic diamonds detection and quality evaluation, named YOLOv8n-adamas. We redesigned the backbone network to improve feature extraction capabilities and introduced a dynamic detection head based on attention mechanisms to further enhance model performance. Experimental results show that on synthetic diamonds dataset, YOLOv8n-adamas achieved a 4.0% improvement in precision (P), a 2.7% increase in recall (R), and improvements of 1.5% and 1.3% in mean average precisions at 50% and 95% Intersection over Union (IoU) thresholds (mAP50 and mAP95) compared to YOLOv8. Furthermore, YOLOv8n-adamas also outperforms other commonly used, high-performing models in various metrics on this dataset, offering effective technical support for the automated quality-based sorting of synthetic diamonds.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje