Popis: |
This study evaluates the use of remote sensing data to improve the understanding of groundwater resources in climate-sensitive regions with limited data availability and increasing agricultural water demands. The research focuses on estimating groundwater reserve dynamics in two major river basins in Morocco, characterized by significant local variability. The study employs data from Gravity Recovery and Climate Experiment satellite (GRACE) and ERA5-Land reanalysis. Two GRACE terrestrial water storage (TWS) products, CSR Mascon and JPL Mascon (RL06), were analyzed, along with auxiliary datasets generated from ERA5-Land, including precipitation, evapotranspiration, and surface runoff. The results show that both GRACE TWS products exhibit strong correlations with groundwater reserves, with correlation coefficients reaching up to 0.96 in the Oum Er-rbia River Basin and 0.95 in the Tensift River Basin (TRB). The root mean square errors (RMSE) were 0.99 cm and 0.88 cm, respectively. GRACE-derived groundwater storage (GWS) demonstrated a moderate correlation with observed groundwater levels in OERRB (R = 0.59, RMSE = 0.82), but a weaker correlation in TRB (R = 0.30, RMSE = 1.01). On the other hand, ERA5-Land-derived GWS showed a stronger correlation with groundwater levels in OERRB (R = 0.72, RMSE = 0.51) and a moderate correlation in TRB (R = 0.63, RMSE = 0.59). The findings suggest that ERA5-Land may provide more accurate assessments of groundwater storage anomalies, particularly in regions with significant local-scale variability in land and water use. High-resolution datasets like ERA5-land are, therefore, more recommended for addressing local-scale heterogeneity in regions with contrasted complexities in groundwater storage characteristics. |