Autor: |
Rekha Srivastava, Humera Naaz, Sabeena Kazi, Asifa Tassaddiq |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Axioms, Vol 8, Iss 2, p 63 (2019) |
Druh dokumentu: |
article |
ISSN: |
2075-1680 |
DOI: |
10.3390/axioms8020063 |
Popis: |
In this paper, we obtain a new series representation for the generalized Bose−Einstein and Fermi−Dirac functions by using fractional Weyl transform. To achieve this purpose, we obtain an analytic continuation for these functions by generalizing the domain of Riemann zeta functions from ( 0 < ℜ ( s ) < 1 ) to ( 0 < ℜ ( s ) < μ ) . This leads to fresh insights for a new generalization of the Riemann zeta function. The results are validated by obtaining the classical series representation of the polylogarithm and Hurwitz−Lerch zeta functions as special cases. Fractional derivatives and the relationship of the generalized Bose−Einstein and Fermi−Dirac functions with Apostol−Euler−Nörlund polynomials are established to prove new identities. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|