Popis: |
The formation and localization of sporadic E (Es) layers predicted by the ion vertical drift velocity and its vertical change in the lower thermosphere during nighttime are shown analytically and by numerical simulations. The consideration of the existence of a minimum negative value of the vertical change of the ion vertical drift velocity as a necessary condition of formation of the Es layer and determining ion convergence rate into this layer is extended in case of the presence of vertical wind. Upward vertical wind can shift the convergence regions upward, while downward vertical wind shifts them downward, unlike the cases of the presence of only meridional and zonal winds. It also changes the ion convergence rate compared to the one with just a horizontal wind. It is shown for the first time that the upward constant wind also causes the convergence of ions with the maximum rate in the region where the ion-neutral collision frequency is equal to their cyclotron frequency. While demonstrating the presented theory by numerical simulations, HWM14 data is used for the meridional and zonal wind velocity profiles and the presence of its vertical component is assumed. In this case, in addition to the estimated ion drift velocity and its vertical changes, their initial distribution and ambipolar diffusion also determine the development of ion convergence/divergence processes. For a small magnitude of vertical wind velocity, its significant influence on the ions/electrons behavior is demonstrated, which shows the importance of both tidal wind and wind changes caused by the propagation of atmospheric gravity waves on the formation of the Es layer. In this theoretical research, it is shown that the realistic profile of the wind velocity, which takes into account the vertical component along with its zonal and meridional ones, is important for the prediction of the Es layers formation, as well as regions of ion depletion. |