Autor: |
Martin Kochol |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 12, Iss 20, p 3218 (2024) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math12203218 |
Popis: |
A regular matroid M on a finite set E is represented by a totally unimodular matrix. The set of vectors from ZE orthogonal to rows of the matrix form a regular chain group N. Assume that ψ is a homomorphism from N into a finite additive Abelian group A and let Aψ[N] be the set of vectors g from (A−0)E, such that ∑e∈Eg(e)·f(e)=ψ(f) for each f∈N (where · is a scalar multiplication). We show that |Aψ[N]| can be evaluated by a polynomial function of |A|. In particular, if ψ(f)=0 for each f∈N, then the corresponding assigning polynomial is the classical characteristic polynomial of M. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|