Autor: |
Yasuharu Kanki, Masashi Muramatsu, Yuri Miyamura, Kenta Kikuchi, Yoshiki Higashijima, Ryo Nakaki, Jun-ichi Suehiro, Yuji Sasaki, Yoshiaki Kubota, Haruhiko Koseki, Hiroshi Morioka, Tatsuhiko Kodama, Mitsuyoshi Nakao, Daisuke Kurotaki, Hiroyuki Aburatani, Takashi Minami |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Cell Reports, Vol 38, Iss 6, Pp 110332- (2022) |
Druh dokumentu: |
article |
ISSN: |
2211-1247 |
DOI: |
10.1016/j.celrep.2022.110332 |
Popis: |
Summary: Endothelial cells (ECs) are phenotypically heterogeneous, mainly due to their dynamic response to the tissue microenvironment. Vascular endothelial cell growth factor (VEGF), the best-known angiogenic factor, activates calcium-nuclear factor of activated T cells (NFAT) signaling following acute angiogenic gene transcription. Here, we evaluate the global mapping of VEGF-mediated dynamic transcriptional events, focusing on major histone-code profiles using chromatin immunoprecipitation sequencing (ChIP-seq). Remarkably, the gene loci of immediate-early angiogenic transcription factors (TFs) exclusively acquire bivalent H3K4me3-H3K27me3 double-positive histone marks after the VEGF stimulus. Moreover, NFAT-associated Pax transactivation domain-interacting protein (PTIP) directs bivalently marked TF genes transcription through a limited polymerase II running. The non-canonical polycomb1 variant PRC1.3 specifically binds to and allows the transactivation of PRC2-enriched bivalent angiogenic TFs until conventional PRC1-mediated gene silencing is achieved. Knockdown of these genes abrogates post-natal aberrant neovessel formation via the selective inhibition of indispensable bivalent angiogenic TF gene transcription. Collectively, the reported dynamic histone mark landscape may uncover the importance of immediate-early genes and the development of advanced anti-angiogenic strategies. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|