Popis: |
Greenhouse vegetable production has been characterized by high agricultural inputs, high temperatures, and high cropping indexes. As an intensive form of agriculture, nutrient cycling induced by microbial activities in the greenhouses is relatively different from open fields in the same region. However, the responses of soil microbial biomass carbon (MBC) and nitrogen (MBN), enzyme activities, microbial community composition, and yield to organic amendment are not well understood. Therefore, a 5-year greenhouse tomato (Solanum lycopersicum Mill.)-cucumber (Cucumis sativus L.) rotation experiment was conducted. The field experiment comprised 5 treatments: 4/4CN (CN, nitrogen in chemical fertilizer), 3/4CN+1/4MN (MN, nitrogen in pig manure), 2/4CN+2/4MN, 2/4CN+1/4 MN+1/4 SN (SN, nitrogen in corn straw) and 2/4CN+2/4SN. The amounts of nitrogen (N), phosphorus (P2O5), and potassium (K2O) were equal in the five treatments. Starting with the fourth growing season, the optimal yield was obtained from soil treated with straw. MBC, MBN, phospholipid fatty acid (PLFA) profiles, and enzyme activities were significantly changed by 5 years of substitution with organic amendments. Redundancy analysis showed that MBC accounts for 89.5 and 52.3% of the total enzyme activity and total community variability, respectively. The activities of phosphomonoesterase, N-acetyl-glucosaminidase, and urease, and the relative abundances of fungi, actinomycetes, and Gram-negative bacteria were significantly and positively related to vegetable yields. Considering the effects of organic amendments on soil microbial characteristics and vegetable yield, 2/4CN+1/4MN+1/4SN can improve soil quality and maintain sustainable high yield in greenhouse vegetable production. |