State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis

Autor: Igor V. Tetko, Pavel Karpov, Ruud Van Deursen, Guillaume Godin
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Nature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-020-19266-y
Popis: Development of algorithms to predict reactant and reagents given a target molecule is key to accelerate retrosynthesis approaches. Here the authors demonstrate that applying augmentation techniques to the SMILE representation of target data significantly improves the quality of the reaction predictions.
Databáze: Directory of Open Access Journals