Rotation Invariant Graph Neural Network for 3D Point Clouds

Autor: Alexandru Pop, Victor Domșa, Levente Tamas
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Remote Sensing, Vol 15, Iss 5, p 1437 (2023)
Druh dokumentu: article
ISSN: 2072-4292
DOI: 10.3390/rs15051437
Popis: In this paper we propose a novel rotation normalization technique for point cloud processing using an oriented bounding box. We use this method to create a point cloud annotation tool for part segmentation on real camera data. Custom data sets are used to train our network for classification and part segmentation tasks. Successful deployment is completed on an embedded device with limited processing power. A comparison is made with other rotation-invariant features in noisy synthetic datasets. Our method offers more auxiliary information related to the dimension, position, and orientation of the object than previous methods while performing at a similar level.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje