Autor: |
Chris W. J. van der Weijden, Milena S. Pitombeira, Yudith R. A. Haveman, Carlos A. Sanchez-Catasus, Kenia R. Campanholo, Guilherme D. Kolinger, Carolina M. Rimkus, Carlos A. Buchpiguel, Rudi A. J. O. Dierckx, Remco J. Renken, Jan F. Meilof, Erik F. J. de Vries, Daniele de Paula Faria |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Insights into Imaging, Vol 13, Iss 1, Pp 1-13 (2022) |
Druh dokumentu: |
article |
ISSN: |
1869-4101 |
DOI: |
10.1186/s13244-022-01198-4 |
Popis: |
Abstract Background Graph theoretical network analysis with structural magnetic resonance imaging (MRI) of multiple sclerosis (MS) patients can be used to assess subtle changes in brain networks. However, the presence of multiple focal brain lesions might impair the accuracy of automatic tissue segmentation methods, and hamper the performance of graph theoretical network analysis. Applying “lesion filling” by substituting the voxel intensities of a lesion with the voxel intensities of nearby voxels, thus creating an image devoid of lesions, might improve segmentation and graph theoretical network analysis. This study aims to determine if brain networks are different between MS subtypes and healthy controls (HC) and if the assessment of these differences is affected by lesion filling. Methods The study included 49 MS patients and 19 HC that underwent a T1w, and T2w-FLAIR MRI scan. Graph theoretical network analysis was performed from grey matter fractions extracted from the original T1w-images and T1w-images after lesion filling. Results Artefacts in lesion-filled T1w images correlated positively with total lesion volume (r = 0.84, p |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|