From combinatorial optimization to real algebraic geometry and back

Autor: Janez Povh
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Croatian Operational Research Review, Vol 5, Iss 2, Pp 105-117 (2014)
Druh dokumentu: article
ISSN: 1848-0225
1848-9931
DOI: 10.17535/crorr.2014.0001
Popis: In this paper, we explain the relations between combinatorial optimization and real algebraic geometry with a special focus to the quadratic assignment problem. We demonstrate how to write a quadratic optimization problem over discrete feasible set as a linear optimization problem over the cone of completely positive matrices. The latter formulation enables a hierarchy of approximations which rely on results from polynomial optimization, a sub-eld of real algebraic geometry.
Databáze: Directory of Open Access Journals