From combinatorial optimization to real algebraic geometry and back
Autor: | Janez Povh |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Croatian Operational Research Review, Vol 5, Iss 2, Pp 105-117 (2014) |
Druh dokumentu: | article |
ISSN: | 1848-0225 1848-9931 |
DOI: | 10.17535/crorr.2014.0001 |
Popis: | In this paper, we explain the relations between combinatorial optimization and real algebraic geometry with a special focus to the quadratic assignment problem. We demonstrate how to write a quadratic optimization problem over discrete feasible set as a linear optimization problem over the cone of completely positive matrices. The latter formulation enables a hierarchy of approximations which rely on results from polynomial optimization, a sub-eld of real algebraic geometry. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |