Autor: |
Geoffrey Z. Thompson, Bishoy Dawood, Tianyu Yu, Barbara K. Lograsso, John D. Vanderkolk, Ranjan Maitra, William Q. Meeker, Ashraf F. Bastawros |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 15, Iss 1, Pp 1-12 (2024) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-024-51594-1 |
Popis: |
Abstract The complex jagged trajectory of fractured surfaces of two pieces of forensic evidence is used to recognize a “match” by using comparative microscopy and tactile pattern analysis. The material intrinsic properties and microstructures, as well as the exposure history of external forces on a fragment of forensic evidence have the premise of uniqueness at a relevant microscopic length scale (about 2–3 grains for cleavage fracture), wherein the statistics of the fracture surface become non-self-affine. We utilize these unique features to quantitatively describe the microscopic aspects of fracture surfaces for forensic comparisons, employing spectral analysis of the topography mapped by three-dimensional microscopy. Multivariate statistical learning tools are used to classify articles and result in near-perfect identification of a “match” and “non-match” among candidate forensic specimens. The framework has the potential for forensic application across a broad range of fractured materials and toolmarks, of diverse texture and mechanical properties. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|