Nanoscale Control of Structure and Composition for Nanocrystalline Fe Thin Films Grown by Oblique Angle RF Sputtering
Autor: | Cristina C. Gheorghiu, Aurelia Ionescu, Maria-Iulia Zai, Decebal Iancu, Ion Burducea, Gihan Velisa, Bogdan S. Vasile, Adelina C. Ianculescu, Mariana Bobeica, Daniel Popa, Victor Leca |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Materials, Vol 15, Iss 17, p 6134 (2022) |
Druh dokumentu: | article |
ISSN: | 15176134 1996-1944 |
DOI: | 10.3390/ma15176134 |
Popis: | The use of Fe films as multi-element targets in space radiation experiments with high-intensity ultrashort laser pulses requires a surface structure that can enhance the laser energy absorption on target, as well as a low concentration and uniform distribution of light element contaminants within the films. In this paper, (110) preferred orientation nanocrystalline Fe thin films with controlled morphology and composition were grown on (100)-oriented Si substrates by oblique angle RF magnetron sputtering, at room temperature. The evolution of films key-parameters, crucial for space-like radiation experiments with organic material, such as nanostructure, morphology, topography, and elemental composition with varying RF source power, deposition pressure, and target to substrate distance is thoroughly discussed. A selection of complementary techniques was used in order to better understand this interdependence, namely X-ray Diffraction, Atomic Force Microscopy, Scanning and Transmission Electron Microscopy, Energy Dispersive X-ray Spectroscopy and Non-Rutherford Backscattering Spectroscopy. The films featured a nanocrystalline, tilted nanocolumn structure, with crystallite size in the (110)-growth direction in the 15–25 nm range, average island size in the 20–50 nm range, and the degree of polycrystallinity determined mainly by the shortest target-to-substrate distance (10 cm) and highest deposition pressure (10−2 mbar Ar). Oxygen concentration (as impurity) into the bulk of the films as low as 1 at. %, with uniform depth distribution, was achieved for the lowest deposition pressures of (1–3) × 10−3 mbar Ar, combined with highest used values for the RF source power of 125–150 W. The results show that the growth process of the Fe thin film is strongly dependent mainly on the deposition pressure, with the film morphology influenced by nucleation and growth kinetics. Due to better control of film topography and uniform distribution of oxygen, such films can be successfully used as free-standing targets for high repetition rate experiments with high power lasers to produce Fe ion beams with a broad energy spectrum. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |