Popis: |
Abstract One of the most common diseases among women is breast cancer, the early diagnosis of which is of paramount importance. Given the time-consuming nature of the diagnosis process of the disease, using new methods such as computer science is extremely important for early detection of the condition. Today, the main emphasis is on the science of data mining as one of the computer methods in the field of diagnosis. In the present study, we used data mining as a combination of feature selection method by Gray Wolf Optimization (GWO) and support vector machine (SVM), which is a new technique with high accuracy compared to other methods in this classification, to increase the accuracy of breast cancer diagnosis. The UCI dataset and functional parameters and various statistical criteria were applied to evaluate the proposed method and assess the validity of the results in MATLAB, respectively. Application of the proposed method increased the improvement of the evaluated criteria, which increased the accuracy of diagnosis by 27.68%, compared to former works in the field. As such, it could be concluded that the proposed method had a higher ability to diagnose breast cancer, compared to previous techniques. |