Bifurcations, chaotic behavior, sensitivity analysis, and various soliton solutions for the extended nonlinear Schrödinger equation

Autor: Mati ur Rahman, Mei Sun, Salah Boulaaras, Dumitru Baleanu
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Boundary Value Problems, Vol 2024, Iss 1, Pp 1-15 (2024)
Druh dokumentu: article
ISSN: 1687-2770
DOI: 10.1186/s13661-024-01825-7
Popis: Abstract In this manuscript, our primary objective is to delve into the intricacies of an extended nonlinear Schrödinger equation. To achieve this, we commence by deriving a dynamical system tightly linked to the equation through the Galilean transformation. We then employ principles from planar dynamical systems theory to explore the bifurcation phenomena exhibited within this derived system. To investigate the potential presence of chaotic behaviors, we introduce a perturbed term into the dynamical system and systematically analyze the extended nonlinear Schrödinger equation. This investigation is further enriched by the presentation of comprehensive two- and 3D phase portraits. Moreover, we conduct a meticulous sensitivity analysis of the dynamical system using the Runge–Kutta method. Through this analytical process, we confirm that minor fluctuations in initial conditions have only minimal effects on solution stability. Additionally, we utilize the complete discrimination system of the polynomial method to systematically construct single traveling wave solutions for the governing model.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje