Autor: |
Marcelo A. Savi, Flavio M. Viola |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Fractal and Fractional, Vol 7, Iss 2, p 190 (2023) |
Druh dokumentu: |
article |
ISSN: |
2504-3110 |
DOI: |
10.3390/fractalfract7020190 |
Popis: |
The Daisyworld model illustrates the concept of biological homeostasis in the global environment by establishing a connection between the biota and environment, resulting in a single intertwined system known as Gaia. In essence, the Daisyworld model represents life by daisy populations whereas temperature represents the environment, establishing a population dynamics model to represent life–environment ecological interactions. The recent occurrence of extreme weather events due to climate change and the critical crises brought on by the COVID-19 pandemic are strengthening the arguments for the revenge of Gaia, a term used to describe the protective response of the global biota-environment system. This paper presents a novel Daisyworld parable to describe ecological life–environment interactions including the revenge of Gaia and the greenhouse effect. The revenge of Gaia refers to a change in the interplay between life and environment, characterized by the Gaia state that establishes the life-environment state of balance and harmony. This results in reaction effects that impact the planet’s fertile regions. On the other hand, the greenhouse effect is incorporated through the description of the interactions of greenhouse gases with the planet, altering its albedo. Numerical simulations are performed using a nonlinear dynamics perspective, showing different ecological scenarios. An investigation of the system reversibility is carried out together with critical life–environment interactions. This parable provides a qualitative description that can be useful to evaluate ecological scenarios. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|